HVAC Equipment Shortages Due To COVID-19 Pandemic Create Chaos

HVAC equipment shortage

There’s a significant shortage of HVAC equipment needed to replace our customers’ current systems.  In some areas, if you were to sell a new system to a family, there’s a chance that order with your distributor can’t be completely fulfilled.  And I’m going to talk about why.

Nobody thought in March or April of 2020 when we were all sitting at home following Stay At Home orders that our industry, primarily residential HVAC, would see a 30% to 60% uptick in business through the summer months of 2020.

May, June and July were months that our company, as well as almost every other contractor I’ve talked to, saw record sales, especially in the equipment replacement area.  I’ve talked to some contractors in other parts of the country that haven’t seen this increase in sales, but it’s been few and far between.

To get some answers as to why this shortage has occurred, I asked a couple of industry professionals in my area to give me their thoughts.  I wanted to know what other contractors are doing about it, and when we can expect our warehouses to get back to normal levels of equipment inventory.

Why has the HVAC Equipment Shortage Occurred?

COVID-19 affected all manufacturers in one way or another.  Some manufacturers were hit earlier than others due to outbreaks in their facilities, forcing them to abide by CDC regulations and shut down for two weeks at a time.  It slowed down production to a near halt.

One industry professional told me, “Everyone felt the effects when the raw materials used to build our equipment became unavailable.  Theses included things like control boards from India, motors, and controls from China, raw steel, raw aluminum, and copper from various parts of the world.”

“When something like COVID interrupts any part of the supply chain system, including how those parts get shipped from there to here, and the number of employees working in these factories, the only thing to expect is chaos. We’re experiencing a weird dynamic right now with worldwide stress, but also with a high demand for our products and services.  The scenario is creating an almost panic for our industry to perform.”

What Are Contractors Doing Since Their Equipment Isn’t Available?

HVAC contractors, large and small, whose usual brand of equipment ran out, were forced to go to other stores and find anything they could get their hands on.  That created an even higher demand for equipment from our local suppliers.  So, while the sales were good for them, almost every supplier felt the squeeze, eventually getting to the point where they were out of product, which usually lasts a lot longer.

Another industry professional told me, “At first it seemed like a lot of contractors became extremely frustrated with the lack of inventory, especially since a lot of the jobs were already sold and they needed the equipment quickly.  But as time went on and EVERY supply house was having the same issue, it became apparent to us contractors that it wasn’t because these supply houses weren’t watching their inventory close enough, and restocking accordingly.  It was a bigger problem all around.”

When Will Things Get Back to Normal?

Equipment manufacturers are not and can not give us ETAs as to when equipment will be back to normal levels.  The demand for products and services in this area has outpaced the manufacturer’s ability to build, produce, and ship out inventory.

Some manufacturers are saying October, but that would be if no new setbacks occur from closures caused by another increase in COVID cases.  And in a time where new issues seem to arise from this pandemic every week, and with no dependable vaccine ready to go by the end of 2020, it’s tough to tell when the HVAC equipment shortage will end.

Fortunately, in California, we’re getting close to the end of the hottest time of the year, so local suppliers should have an easier time restocking their shelves as demand goes down.  Winter months are relatively mild around the Sacramento Valley, so we won’t get that high intensity of equipment change-outs experienced in other areas of the world with longer, colder winters.

Stay safe and follow CDC guidelines so we can get through this sooner than later.

Thanks so much for stopping by, and we’ll see you next time.

Don’t Miss Our Video on This Topic:

Four Reasons Why Your AC Circuit Breaker Keeps Tripping

circuit breaker tripping

Why Does My Air Conditioner’s Circuit Breaker Keep Tripping?

Have you had an issue with your air conditioner lately where the circuit breaker at the main panel keeps tripping?  Have you gone over to the side of the house and tried to flip that breaker back on only to have it flip right back off?  In this blog, I’ll go over what could be going wrong with your AC system when this happens.

It’s not fun to come home and realize that your house, which should be a cool 75 degrees right now, is sitting at a balmy 85 degrees.  So, you go over to the side of your house and open the main electrical panel.  There you find the air conditioner circuit breaker tripped.  This means no high voltage power is getting to your AC to let it run.  Not cool.

You flip the breaker back to the on position only to have it trip again either immediately or after a few minutes or even seconds.  Now what?  So you call your local AC guy.  He comes out the next day.  Now that the system has been sitting idle for several hours, it doesn’t surprise me when the technician who comes over for a $ 100-weekend service call flips the switch on the breaker, and the system starts working again.  Hey! Someone’s got the magic touch!

You pay the smart technician the diagnostic fee, and they head out to their next call.  Meanwhile, after 30 minutes of the system running fine, the breaker trips again.  The technician is long gone, and likely can’t be back to fix it until Monday when they re-open.

How Do You Know What’s Going on with the Circuit Breaker?

If the breaker repeatedly trips after a while, there’s a problem with one of the parts inside the AC.  If the breaker trips immediately after turning it back on, there something going in the wiring.

You can’t just flip the breaker back on and hope it stays that way.  It might! But most likely, there is a reason it tripped, and that problem will come back around.  When this comes up with my technicians at Fox Family, I tell them to slow down and ask themselves, WHY did the breaker trip?  Sure, the breaker reset when you flipped it back on, but a technician finds out why it tripped.

Danger!

I want to reiterate that I’m only giving homeowners and technicians some reasons why the breaker may be tripping.  Working with high voltage can cause severe injury and even death to even the most experienced technicians.  I read about it all the time in the mechanical chat groups I’m in.

Why Do Breakers Trip?

A breaker trips when there is too much power consumption or current at any given time.  The wire from the AC to the panel heats up enough that it trips.  This stops a potentially hazardous situation from happening.  Here are some reasons your AC will cause circuit breaker tripping:

  1. The breaker could be bad
  2. The compressor or fan is drawing too many amps
  3. A short circuit
  4. Refrigerant pressure issues

The Breaker Could Be Bad

This doesn’t happen a lot.  Breakers are sturdy switches that, when heated up enough that they’re repeatedly tripping, can become weaker and trip more easily.  A new breaker can fix this problem.

The Compressor or Fan is Tripping the Circuit Breaker By Drawing Too Many Amps

Although I can’t cover every situation that might happen, I can give you a couple of common scenarios.  If a motor gets stuck and can’t turn over when the proper voltage is applied, the motor will pull a higher number of amps.  So much so that the heat builds up in the wiring and trips the breaker.  This won’t trip the breaker immediately.  But after a while (and there is no specified amount of time), the breaker can trip whenever the thermostat is calling for the AC to be on.

At the start of the cooling season, this pattern often happens with the compressor, that black cylinder at the bottom of your outdoor unit.  It pumps the refrigerant back and forth through the copper lines, much like the heart does in the body.

Assuming the capacitor is good, sometimes adding a hard-start capacitor to the circuit will help give it that boost needed to turn the motor over.  If it does, count your blessings and start saving up for a new compressor or AC unit altogether.  It’s running on borrowed time. It’s just a matter of time before your AC gives out.

A Short Circuit

Another reason for a circuit breaker to trip is because of an electrical short.  When two normally sheathed wires like a hot wire and a neutral wire touch each other when voltage is applied, it causes a major event.

The AC uses 240 volts.  This means the two or three wires leading to your motor carry at least 120 volts.  A third one can carry even more.  If two bare wires touch each other when the system is supposed to be on, a high current situation can occur, causing the breaker to trip.  As soon as the voltage is applied, the breaker will trip immediately.

Touching Wires

Another way the breaker will trip immediately is if one of the motor’s wires touch the inside wall of the compressor.  Remember, these motors have windings inside of them that help spin the motor shaft.  The windings are covered with sheathing to protect the wiring.  But it still happens, especially on older systems that have been running for ten to 20 years or longer.

Check below for a link to my video that talks about how to diagnose a bad compressor.

Refrigerant Pressure Issues

One last reason a compressor could trip the AC breaker is refrigerant pressure.  If the pressure is too high in the system, meaning there is too much refrigerant, the compressor is once again having to strain too hard to do its work.  The breaker won’t trip immediately, but over time.

This scenario doesn’t happen as often as the other events above but can look like a bad compressor. Removing a pound of refrigerant will tell you if it’s a pressure issue because you’ll see both sides of your gauges go down a little.  If this happens and the temperature split stays between 18 and 22 degrees, I would try removing refrigerant until you get the compressor amps to get back down to below the RLA, and the temp split stays within range.

Starting Over

If removing the refrigerant isn’t working as well as you’d like, it might be smart to tell the customer you’d like to remove all the refrigerant and start over with virgin refrigerant and a factory charge.  You don’t know this system’s history, and you’re not expected to, especially if the homeowner doesn’t know it or have invoices showing what previous techs have done to repair the AC in the past. It’s a fair solution for both of you.  If you do this and the compressor is still pulling high amps, and you’ve checked everything else on the system, you have a bad compressor.

Summary

These are just a few reasons why the circuit breaker in your home could trip the breaker in the main electrical panel.  If it trips immediately after turning it back on, you likely have a problem in the wiring.  If your breaker trips after a certain amount of time, something is going on with a part in the AC system.

Let a Professional Do the Fixing

I can’t tell you anybody can fix these problems by themselves.  In fact, you might not even be able to order the parts you need as it takes a licensed contractor to purchase them from a local distributor.  Let a professional come out and diagnose the exact problem and then fix the system so you can have peace of mind.

Thanks so much for stopping by and we’ll see you next time.

Don’t miss my videos about or related to this topic:

Fox Family Wins “Ultimate Family Game Room Prize Package” From Honeywell

“Ultimate Family Game Room Prize Package”.jpg

We’re excited to announce that Fox Family Heating & Air won a grand prize last month’s  “Ultimate Family Game Room Prize Package”.  Today we got to celebrate it today!  For every Honeywell Control we purchased over the summer through Ferguson HVAC Supply in Sacramento, we earned a ticket in the hat for the drawing.  And we won!

One HVAC contractor from the Arizona/Nevada, Southern California, and Northern California regions was chosen randomly in July of 2021.  The winners were announced in August.  And in September we received all the goodies!  The $2000 prize package including:

  • 60” Class UN7000 Series LED 4K UHD Smart webOS TV
  • XBOX One Game Station
  • PacMan Head2Head Home Arcade Game
  • Two Stealth 700 Gen 2 Black Wireless Gaming Headset
  • Ten-Game 48” Multi Game Table
  • 19” Wide 105 Can Capacity Extreme Cool Beverage Center
  • Family Game Room Sign
  • Rockville HTS56 1000w 5.1 Channel Home Theater System
  • 36” Round Bar Type Pub Table w/ four Residio Barstools
  • Yeti Roadie 24 Insulated Chest Cooler

All had a great time as we gave away all the prizes through a raffle.  We gave everyone 30 tickets to put in for every item they wanted.  We threw in some extra things and made sure everyone won a prize.

Our team works so hard all year round, taking care of our Fox Family customers.  Today’s giveaway was a great way to show them some love.

Thanks so much to Ferguson HVAC Supply and Residio Honeywell Home for providing us with such great prizes from the “Ultimate Family Game Room Prize Package”.  Fox Family Heating & Air appreciates you!

How Moisture in the Refrigerant Lines Damages Compressors

How Moisture in the Refrigerant Lines Damages Compressors

Anytime technicians cut open the refrigerant lines to the air conditioning or heat pump system, we have to ensure the interior of those lines doesn’t get debris and other contaminants in them.  We can’t prevent air and moisture from getting in them, which is why we need to evacuate systems thoroughly.  If we don’t, a form of acid will develop inside the compressor and eat away at the protective lining that surrounds the copper stator windings.

Not only will the acid wear out the windings, but it can tear away the copper lining of the tubing itself.  That copper will land on the bearings or other components in the refrigeration circuit.  Other examples would be the TXV or other metering devices.  Once this starts, friction starts building up, causing the compressor to work harder to do the same work.  Over time, the friction builds up so much the compressor seizes or burns out. 
 

 

Moisture and POE Oil

 

R-410A systems use Polyol ester oil (POE Oil) which is a hygroscopic oil. POE oil retains water in the air a lot more than the mineral oil (R22) systems.  That’s why we have to evacuate the system of as much moisture as possible.  Technically, we’re not supposed to leave the lines open for more than 15 minutes.  That’s hard to do when replacing a major component like a compressor or evaporator coil.  If exposed long enough, it’s best to replace the compressor oil to the levels printed on the data label on the side of the compressor.   This is because no matter how long we have the unit on a vacuum, that moisture will never be removed from the compressor oil.

 

When a system is flat on charge, meaning there is no refrigerant left in the system because it all leaked out,   it can be assumed that air is now in the system.  There’s no vacuum left in the lines, so the leak needs to be repaired and then evacuated to 500 microns or less again to get it back to normal.  Does this mean if the system is flat, the lines have been open longer than 15 minutes?  I would assume so.  Should we change the oil in the compressor?  I guess so.  Do any techs do it?  Probably not.

 

 

Filter driers catch remaining moisture

 

Because it’s so hard to get all the moisture in the lines evacuated, we always install a filter drier.  A good filter drier has desiccants inside it that will absorb residual moisture in the lines as it flows through the system.  Even then, only so much moisture can be absorbed by a filter drier.  A clogged filter drier will start restricting the normal refrigerant flow and even cause flash gas causing abnormal operation.  You can tell if a filter drier is clogged by measuring the temperature of the liquid line before and after the filter drier.  If the difference is 3 degrees or more, changed the filter with a new and properly sized one.

 

It’s so important for technicians to ensure there is no moisture from the atmosphere left in the lines when we turn the system on.  There are tools, components, and procedures to help with this. If we don’t do it right, we are only doing a disservice to the customer because the electrical and mechanical parts of the AC system will eat away from acid that forms inside of it.  

 

Professional, knowledgeable service is essential when it comes to the air conditioner.  Don’t just call anyone out to service your system.  Call Fox Family or even book online  at the top of the page.

That’s it for this week.  Check us out on the next blog!

This is How to Successfully Troubleshoot an AC Unit

how to troubleshoot an AC unit

Breaking Down the Parts of a Air Conditioning System

Technicians just starting in the field have many questions about the process required to troubleshoot an AC unit.  In this series, I’ll break down the major parts of an AC system. But first, let’s go through a simple service call to figure out why the AC in question is not working.  Then we can get into more details in this series once we know what’s going on.

To successfully troubleshoot an AC unit, let’s start at the thermostat and go all the way to the outdoor unit turning on and the blower turning on, forcing air into the rooms of your house.

The Thermostat

When your house reaches a point where the AC needs to come on, a series of components work in a specific order to produce cold air.  So, go ahead and turn on the air conditioner.  Set the temperature down below what the temperature of the room is now.

Taking this step will make two switches inside the thermostat close:  the Y and the G terminal.  Y is for cooling – it turns on the outdoor unit, and G is for the air handler’s blower fan.

At this point, I always check the filter to make sure it’s clean.  Without a clean filter, your system can’t breathe in, so it won’t be able to breathe out, sending air into the house.

The Air Handler

Let’s go to the air handler first and see what’s going on there.

At the air handler or furnace, the control board is what’s calling the shots.  It receives the signal from the thermostat for Y and G to energize the terminal block.  If you put your meter leads on the C and Y terminals, you’ll get 24 volts.  Between C and G, you’ll get the same.

G is going to send the signal to the relay switch on that same board.  The closed switch tells the blower motor to come on.  It allows the 120 volts from the correct blower tap to start turning the blower wheel.  The blower motor on these units will have a capacitor on it. See my video below outlining the steps to test it.  On models made after 2019, blower motors became a little more advanced and energy-efficient.  Digitally commutated motors like this don’t use a capacitor.

The only other thing going on up at the air handler is the cold evaporator coil has refrigerant moving through it. There’s a metering device at the coil, but we’ll address that in another segment in this series.

Some furnace and coil combos have a condensate safety switch wired into the control board.  The air conditioner creates condensation that drains out to the side of the house. This switch provides a safety device that stops the air conditioner from producing any more condensation should the drain clog up.  See my video on this topic as well, below.

The Air Conditioner

Now let’s get out of this hot attic and head out to the air conditioner!  Technicians must be safety conscious at the AC.  Two hundred forty volts flowing through your body is no fun but regularly happens to people who aren’t qualified to work on it.

Let’s see what should be happening at the air conditioner when you take the panel off.  That Y signal from the air handler connects to the contactor, which pulls in, allowing the 240 volts from the house onto the compressor and condenser fan motor.  The compressor will pump the refrigerant to and from the outdoor coil and the indoor cold coil we talked about earlier.  The condenser fan motor keeps the outdoor unit cool by sending the heat from inside the house out of the AC unit’s top.

From here, the AC will provide about 18 to 22 degrees cooler air than is going into the return side of the system.  If it’s not and the air is reaching that temp split, you may need to check the refrigerant charge and start doing some more in-depth troubleshooting of the compressor and more, which is just what this series will explore.

Troubleshoot an AC Unit: Improving Your Skill Set

As a new technician, you don’t have to be intimidated by all kinds of moving parts and thermodynamics.  Yes, when you get down to the details about it, you’ll need to have a greater skill set, which means more training – and hopefully, this series will provide that for you.

Thanks so much for stopping by, and we’ll see you at the next blog post!

Don’t miss our videos related to this topic:

https://www.youtube.com/watch?v=glFsL73YmNU&t=7s
https://www.youtube.com/watch?v=n-xOiDVhyFk
 

What Temperature Should I Set the Thermostat in My House?

Determining the Correct Temperature Setting for Summer in Sacramento

What temperatures should you keep it in your home during the summer?  That’s what we are going to be talking about on this blog post.

When moving to a new home or just using your central AC for the first time you may want to know the temperature you should keep it at in your home during the summer.  There are a few answers depending on who you ask.  So let’s talk about those differences now.

Energy Star

Energy Star is a voluntary program led by the EPA and Dept. of Energy that helps business and people figure out ways to save money on their electric bills.  Energy Star says you should keep it at 78 in your house.  They also say you should keep the temps at 84 degrees when you’re not at home.

Energy Star rated thermostats already have these predetermined temperatures set in them.  You’re able to adjust those temps whenever and however you choose as the owner of the thermostat.

SMUD and PG&E are our local utility providers.  SMUD follows the US Department of Energy when they suggest setting your thermostats at 78 degrees when you are home and setting it up to 10 degrees higher for those times when you are not at home.

What Could Go Wrong?

What I wouldn’t do is set the temperature all the way down to the lowest setting when you want the air conditioning on.  Several things can go wrong here, and it doesn’t get cooler any faster in the house when you do this.  What can happen is you forget to turn the thermostat back off when your done needing cool air.  This leads to sky-high electric bills and a home that sees extreme temperature changes throughout the day.

So what temperature should I keep it at?  It’s simple: whatever temperature you want it to be at.  Let’s say the temperature on your thermostat says it’s 78 degrees in your home. Are you comfortable?  If not try lowering the temperature one to two degrees and see if that makes a difference.  Still not satisfied?  Set the temperature down even more.  If you find yourself the most comfortable at 74 degrees, then so be it.  You’re the king of your castle and you can set to wherever you feel the most comfortable.

For example, I work in the HVAC industry.  In the summer, I spend long hot days fixing other people’s AC systems.  By the time I get home, all I want is a nice cool place to sit and relax.  I usually want it about 72 degrees in the home.  My co-workers sometimes want it down to 68 degrees!  Other folks who may work inside, in normal environments where temperatures aren’t soaring around 120 degrees are just fine with their home temps at or above 78 degrees.

How the different temps affect your electric bill

Be Aware

A person who keeps their AC at 78 degrees in his or her home will have their AC come on less than a person who desires it to be 68 degrees in their house.  Your AC is the most expensive thing to run in your house, and that’s a pretty big spread too between 68 and 78 inside the home.  Typically, a person who keeps their system at 74 degrees and then starts setting it at 78 degrees can expect to save about 25 to 35 dollars a month on their bill.  Over the length of the entire summer, that money adds up!

Saving Money

Consider buying a thermostat that sets back at predetermined times.  Energy Star says it can save you $180 a year by switching to a setback type thermostat.   This allows you to set your thermostat for times of the day when you are coming and going.  For instance, the Honeywell thermostats we use want to know what time you wake up, what time you go to work, what time you come home, and what time you go to bed.  These four major events in your family’s daily lives can determine what temperature it will be in the house.

At Fox Family, we can easily set a program for it for the weekdays and then set it for the weekends.  Folks who are in their homes for the majority of the day, or don’t have a schedule where they work during the week can set it up for just what time you wake up and what time you go to bed.  Really any combination is available as Honeywell lets you decide on your terms.

A Helping Hand

And if you have one of these programmable thermostats, and you don’t feel comfortable setting a program on the thermostat, call or text us and we’ll come out and show you how to do it.  It really doesn’t matter which brand of thermostat it is either.  We’re familiar with all different types of them, and we just want to make sure you’re comfy in your home.

Summary

I hope this answers your question as to what temperature to set your thermostat in the summer.  These sunny and hot Sacramento summers can really drive you bonkers with the fact that we need to cool ourselves and our homes down.  Set it to whatever you are comfortable at, and that’s the right temperature.  Just remember that as long as your AC is on, your electric usage goes up.  And somebody’s gotta pay for that.

If this is your first time watching our channel, please click subscribe down below on the bottom right, and if you click that little bell next to it, you’ll be notified of all our videos as soon as they come out.

And don’t forget to get your official Fox Family gear on Teespring.com.  If you’ve ever wanted Fox Family swag, here’s your chance to wear the same stuff we wear out in the field.

Thanks so much for watching and we’ll see you on the next video!

Don’t miss our YouTube video on this topic:

Our Financing Options That Work – Fox Family Heating & Air

Financing Options - Fox Family Heating & Air Conditioning

Purchasing a new HVAC system is one of the most significant investments you’ll make for your home.  But I wanted to let you know that we offer some great for financing options here at Fox Family Heating and Air.  So, what follows is a few different financing solutions for our customers to help ease the financial burden.

At the end of telling you what we do offer, I wanted to tell you WHY we don’t offer PACE financing as an financing option for our customers.  So, I hope you’ll stick around to hear that.

We use two solutions for financing — Synchrony Bank and GoGreen Financing by PG&E.

SynchronySynchrony Bank Financing

Synchrony is our most popular form of financing.  It offers an unsecured revolving credit line (like a credit card), specifically for home improvements like your upcoming HVAC system.  They have no liens attached to your HVAC equipment either.

Here are 5 reasons we partner with Synchrony3 finance.

  1. Their PAYMENT OPTIONS
    Synchrony allows our customers to select a payment plan that works best for their budget.  Customers can choose one of the following options.
    • 25 months at 0.00%
    • 37 months at 5.99%
    • 61 months at 7.99%
    • 132 months at 9.99%
  2. Their EASY APPLICATION PROCESS
    • The credit application is short and simple and can be done over the phone with our office staff – or we can email a link directly to the customer to complete. Please email us at [email protected] to get started with the process.
  3. You get an INSTANT CREDIT DECISION
    • Upon completion of the application, the credit decision is instant. Once approved, Synchrony emails a financing agreement to the customer for electronic signature.
  4. It’s FULLY DIGITAL
    • The entire process with Synchrony is done electronically. This means faster processing and no postage or wasted paper.
  5. There’s NO MINIMUM
    • Customers can apply for financing for smaller repairs, too. For any financed amount under $2,500, Synchrony offers a payment plan of 6 months at 0.00%.

GoGreen Financing

GoGreen Financing through PG&E

Again, this program is available to PG&E customers only. Meaning, at my house, we get our natural gas from West Coast Gas and our electricity from SMUD. So, we wouldn’t be able to use GoGreen financing.

Customers can choose from several different lenders affiliated with this program.  The rates range from 5.99% to 9.99%, and they also have options available for customers with lower credit scores.

This is an unsecured loan, so there is no lien placed on the equipment.

Customers can apply for this loan by going to www.gogreenfinancing.com.   The customer works directly with the lender for the application and financing documents.  This process, from application to system installation, typically takes about 5-7 days.

Once all required paperwork is in place, GoGreen will provide us with an authorization to proceed with the system installation.

Why We Do Not Use Pace

You may have heard about PACE, YGRENE.  A PACE loan might be a viable option for funding. It makes it easy for you to qualify for relatively affordable long-term loans, but there are pros and cons of going this route.

The Pros are typical – easy approval, no down payment, the assessment stays with the property, very flexible terms, extended payoff times (10-20 years, for example), and the interest rates might be tax-deductible.

But because of the Cons – we don’t offer it. Don’t get me wrong; some companies do a ton of PACE financing. But something rubs me wrong about it, so we don’t.  And here’s why:

  • Some contractors push PACE financing options to serve their own interests. Contractors receive additional referral fees from a lender if they arrange the project’s funding, so the potential for conflicts of interest is real.
  • Most people think of payments as a monthly routine. Payments for the PACE loans are due in large chunks once or twice a year.  So, you have to save monthly for when it’s time to make those bulky payments, or else you’re going to get a surprise expense when it’s time to make those inflated payments.

Granted, If your mortgage loan servicer pays your property taxes through an escrow or impound account, you should be able to make your PACE payments in monthly installments as well.

  • PACE financing, while relatively simple, isn’t cheap. There are significant closing costs, and the interest rates can be higher than traditional home equity loans or a line of credit.
  • Realtors hate PACE financing because it makes it difficult to sell the house until the loan is fully paid off. And if you suddenly decide to pay the loan off early so that you can sell the house easier and you didn’t check that little box when you signed up for the loan, you get stuck paying the loan’s interest anyway.

Salespeople will tell you the loan stays with the property and not the owner.  So when you’re ready to sell your home, it just passes on to the new owner.  But no buyer wants to incur those payments, trust me.

  • Finally, PACE borrowing is secured by your home, so it’s possible to lose your home in foreclosure if you don’t make the payments. And because the PACE lien is generally in “first position”—meaning, in front of your mortgage lender—you risk foreclosure even if you make your regular mortgage payments as agreed.

Also, according to the Federal Housing Financing Authority, homes with a PACE lien are not eligible for a mortgage financed by Fannie Mae, Freddie Mac, or the Federal Home Loan Banks. That could make it impossible to sell the property to someone whose mortgage was obtained through a federal lending program.

Okay, I didn’t mean to go off on a tangent there, but I feel strongly about transparency.  As the owner of Fox Family, I’m privy to all of these details, but it’s hard to get this info to all of my techs and make it sink in by the time they get to your kitchen table to sell you a system.  For that reason, all of these little details, which can ultimately end up with someone losing their home, aren’t worth it to us just to sell a system.

Our 2 Financing Options

So, these are our financing options.  Hopefully, this eases the burden of your HVAC project so you can break it down into smaller payments.  Our 0% for 25 months option through Synchrony is a great way to go.  You can pay it off early, but you have to make at least minimum payments every month.

If you have any questions about this, shoot me an email at [email protected]

Should I Hook Up My AC Manifold Gauges at Every Service Call?

Should You Hook Up Your Manifold Gauges Every Time?

Maintaining the Integrity of Your Sacramento Valley AC System

As a technician starting out in this field, I was told by the company trainer to hook up the hoses to my manifold gauges every time I’m out on an AC service call.  Much like a doctor who wears a stethoscope around his neck, hooking my gauges up meant we were the professionals; and when I bring the customer out to the AC to discuss recommendations or repairs, they would see I was the one with all the knowledge.  Was my trainer onto something, or was this just another effort to blow smoke up the customers rear and make him fall for that company’s high-pressure antics?

If this is your first time reading our blog, be sure to check out our library of blog topics on a wide variety of topics useful for both customers and technicians.

Manifold Gauges: How They Work

Every residential air conditioner has a service valve used by technicians to connect to and read the pressures of the system’s refrigerant. Those service valves have a Schrader core (That’s Schrader Core) that gets depressed when the technician’s manifold hoses attach to the service valve.  It’s just like a valve stem on your bicycle tire.

When the core gets pressed in, the refrigerant is allowed into the technician’s manifold so the pressure can be read on the gauges.  It takes an experienced technician to interpret those readings to accurately determine what’s going on with the refrigerant pressures in the system.  Simply put, we can see the temperature of the evaporator coil, the condenser coil, and can determine the superheat and subcooling levels for that system.

Getting an Accurate Manifold Gauge Assessment

But do technicians need to hook up every time they go out on preventative maintenance or a service call?  Does it mean we didn’t give a full and comprehensive diagnostic if we don’t?  No!  Most technicians will walk up to a system and assess how the system is running by doing a couple of things.  First, have you asked the customer how their system is running?  If not, that’s valuable information to get.  If the system has been running great according to the customer, there may not be any reason to hook up the gauges.

Steps for Technicians

Let’s say you’ve asked the customer how the system has been performing.  They report that the system’s been running fine.  They just wanted to call you out for a pre-season tune-up, like the ones we offer at Fox Family for just $75.  Have you checked the temperature split to see if the system is blowing nice cold air?  That would be more input that should sway a technician from hooking up their gauges.

I know it’s a little cliché but checking the temperature of the suction line can further indicate that you wouldn’t need to hook up your gauges to the AC system.  The liquid line should be a few degrees warmer than the outside temperature, too.  So, making some initial checks like this can make someone comfortable about not hooking up their gauges to the system.

Why don’t I think you should hook up your gauges so much?  Hooking up your gauges can do several things to actually harm the performance of the system over the long run.  Maybe not today, but the overall lifespan of the system can be affected.

Contamination

I feel that hooking up gauges from one system to the next contaminates the next system you hook up to.  Taking a little bit of refrigerant from one system, going to the other side of town and putting your gauges on that system has now introduced a trace of contaminants that system has never seen before.  Moisture and air from one system can easily be transferred to another system.

This is definitely true if your no loss fittings or ball valve fittings on your hoses retain the R22 freon in one system and then get hooked up to that one on the other side of town that is an R410a system.   A technician doing this will literally create a new mixture, a new refrigerant even.  Done enough times, it will throw off the system readings enough that not even the most experienced techs can get the true pressures inside that system.  Eventually, a future technician will recommend removing all the refrigerant and starting over with a new manufacturer’s charge of refrigerant.

Avoiding Burns

Another reason is to reduce the chances of exposing yourself to refrigerant burns.  In the unlikely event that you find a burr in the threading of the service valve and get it stuck it could create a situation where the refrigerant starts shooting out of the hoses.  Some techs will persist in trying to get the hose off and burn themselves.  The risk is small, but but tell that to the techs who have ended up with huge blisters on their hands trying to play hero and losing time off work.  Further impacting their paychecks and livelihood is a serious consideration.

Unintended Loosening

My last reason to think twice about hooking up gauges to every AC system is about the Schrader core.  It can be loosened, creating a tiny leak.  The Schrader core is threaded into the service valve.  And while you’re screwing the new core into the valve which way are you tightening it?  Righty tighty.  Lefty loosey.  Taking off your hoses in the normal counterclockwise direction mimics the same direction it takes to unscrew the Schrader core.

Case in Point

Several times this year I’ve gone out on a service call for no cooling.  The client reports that the system only blows room temperature air.  They’ve have been having maintenance done by a local company every spring and fall. Upon inspection, I saw there was no temp split from the registers.  And the suction line at the AC was warm to the touch.  I unscrewed the service valve cap to attach my hoses.  There, I saw some liquid refrigerant spewing out of where the valve core sits.  I think I’ve found the problem.

Put another way, I’ll quote a recent story in ACHR News:

“There is no reason to ever put gauges on an air conditioning or refrigeration system after the initial installation unless a problem with the mechanical refrigeration circuit is suspected.  Using a psychrometric chart, digital thermometer, digital humidity stick, and an accurate method to calculate airflow can replace having to apply your manifold gauges anytime.”

Increasing Equipment Life

Remember, these systems should contain only virgin refrigerant.  Spending less time putting on and taking off our refrigerant hoses saves more than time.  It increases equipment life, maintains performance, and reduces refrigerant emissions into the atmosphere.

Remember, I was told by the company trainer to hook up my manifold gauges on every AC service call.  He said it would make me look like the doctor who wears a stethoscope around his neck.  Customers supposedly expect to see those hoses hooked up, and if they weren’t, they might think something wasn’t right.  The trainer wasn’t worried about the integrity of the customer’s AC system.  And certainly not the integrity of his company’s high-pressure sales antics.

Your Turn

As always, I appreciate you all for reading our blog posts here at Fox Family in Sacramento.  I would love to hear your comments as technicians out in the field.  How does your company practice service and maintenance calls and hooking up your gauges every time you get called out?

Thanks so much for stopping by and we’ll see you on the next blog topic!

The HVAC Industry Continues to Experience the Effects of COVID-19

HVAC and covid 19 Featured image

HVAC Supply Pricing Continuing To Rise

Folks who purchased their new AC system at the beginning of the year should be singing their praises.  The industry continues to see rising costs of materials combined with a shortage of workers.  

A colleague of mine said, “When something like COVID interrupts any part of the supply chain system, including how those parts get shipped from there to here. We’re experiencing a weird dynamic right now with worldwide stress, but also with a high demand for our products and services. Also, considering the low numbers of employees working in these factories, the only thing to expect is chaos. The scenario is creating an almost panic for our industry to perform.”

Halfway through the summer of 2021, things haven’t gotten any better.  We continue to be frustrated.  Selling equipment is tough enough, but to get the okay from a customer and potentially not have their equipment is challenging.  It’s the toughest thing I’ve had to deal with since becoming a contractor in 2015.

What happens is, when we order our equipment online in the past, we could see the inventory levels of our distributor.  We would look up a particular furnace that matches up with a condenser and evaporator coil and see that they had 20 of those furnaces.  Now when we win a job, we have to submit the order and wait for the distributor to get back to us and let us know if they have the equipment to fill that order.  If they don’t, we have to call the customer back and let them know.

On a few occasions this year, we have had to offer the customer an entirely different brand than Trane, which has always been our equipment of choice.  This has worked out for those customers, and we appreciate them being flexible enough to understand.  

Every HVAC contractor in the United States is dealing with this equipment situation.  Manufacturers say they can’t get equipment out fast enough for the rising demand for new equipment.  This has created the highest rate of price increase we’ve seen in a very long time.  Each year, we typically see a 4% to 6% increase in the cost of equipment.  

attic furnace unit

This year we’ve already seen a 21% increase in that same equipment. This has resulted in your basic $10,000 HVAC system increasing by $2,000 in just one year.  Higher-end equipment has grown exponentially.

With a few to several more months of rapid inflation in the world’s economy, we continue to brace for whatever price increases we may see. These price increases ultimately get passed along to our customers. 

So, like we said this time last year, as we’re getting close to the end of the hottest time of the year, local suppliers should have an easier time restocking their shelves as demand goes down.  Winter months are relatively mild around the Sacramento Valley, so that we won’t get that high intensity of equipment change-outs experienced in other areas of the world with longer, colder winters.

Let’s keep our fingers crossed America get’s back to normal soon.  People need heating and air conditioning. It’s not a luxury for some people.  With continued demand and lower inventory of equipment and the parts that make that equipment up, inflation continues, stressing this contractor out.  

Stay safe and follow CDC guidelines so we can get through this sooner than later. Thanks so much for stopping by, and we’ll see you next time.

How I Troubleshoot a PSC Condenser Fan Motor on an Air Conditioner

Condenser fan motor

Condenser fan motors come in a couple of forms.  PSC style and ECM style.  PSC motors are easily identified by the run capacitor that comes inside the service panel with them.  ECM motors are electronically commutated motors run on their own power.  Today we’re talking about the PSC condenser fan motor which you’ll find on a lot of the basic 10 to 14 SEER single-stage systems out there. 

There are only a few things that can go wrong with your typical PSC motor.  Voltage from the panel isn’t sufficient, the contactor is bad, the capacitor is bad, or damaged parts inside the condenser fan motor.

Why Is The AC Making A High Pitched Noise?

I’ve gotten this call before.  The customer says the outdoor unit is making a very pitched noise.  Louder than they’ve ever heard!  When you get to the house and turn on the AC, you walk up on the outdoor AC unit and find that the compressor is pumping the refrigerant, but the fan on top is not spinning.

What’s happening here is the condenser fan blade isn’t spinning which normally removes the heat from the outdoor unit.  If it doesn’t, the compressor will overheat and shut down, but not before putting up a screaming hissy-fit.  After that, the internal overload switch on the compressor opens.  It takes about 45 minutes or so to cool back down, and then retry running again.  Heats up, shuts down, cools off, restarts, and over and over.

In this case, you likely have good voltage to the system but just to be sure make sure you have about 240 volts to the load side of the contactor while it’s running.  This lets you know the line voltage is good and the contactor is good in one quick test with your multimeter.

You only have so much time to do this before the compressor shuts down, but next, I usually take a stick or something and try spinning the fan blade with it.  If the fan starts spinning after giving it a little nudge, I’d check the capacitor next.  That capacitor is what helps it start and run efficiently.

If the capacitor checks out good, then you know you have proper voltage getting to the motor, so the condenser fan motor is bad.

If the fan blade doesn’t keep spinning after you nudge it, the capacitor could be good, but still, check it.  If it’s good, the condenser fan motor is bad.

Checking The Condenser Fan

I’ve seen this happen when a big windstorm hit an area recently and knocked some branches down into the top of the AC.  The shroud on top usually does a great job of protecting the fan blade, but in this instance, a stick wedged itself in there and caused the motor to burn out.

Another reason this can happen, especially on universal replacements is the inside of the motor got wet.  These motors come with rubber plugs sometimes.  These plugs have to be placed on the top side of a downward mounted fan, and in the bottom of an upward facing motor.  The ports on the opposite sides should remain open, so that any moisture that does get into it, can drain out.  Happens all the time!

I would say check the fan motor for a short to ground, but the main breaker or service disconnect fuses would have usually tripped by now.  So let’s check the motor windings first to see if we have an open or damaged winding.

Take the wires off the contactor and the capacitor that leads to the fan motor.  Refer to your wiring diagram that comes with the AC and check your ohms (resistance) between Common (Purple or C on the capacitor) and Start (Usually Brown but was attached to Fan on the capacitor.)  You should read a fairly low amount of resistance here.  If you read OL on your meter, then you have an open Start winding

Common and Run (Black, or the only wire that’s coming from the contactor to the fan motor.)  You’ll likely measure a lower amount of resistance here.  If it’s OL, then you have an open Run winding.

If you have an OL on both of the motor’s windings, the motor’s internal overload switch could be open.  If you allow time for it to cool down, and it still wont run, replace the condenser fan motor.

Just in case you do have good windings, let’s double check to make sure the motor isn’t shorted to ground.  You can check with your ohm meter, but I usually just use the continuity setting on my meter.  Check between the frame of the motor and each winding.  Common, Start, and Run.  Make sure you’re not using a painted surface for the frame.  You want to use a metallic base for this test.

Condenser motor

If you have continuity between any of these and the frame of the motor, replace the condenser fan motor.

Well, I hope this helps you troubleshoot your next condenser fan motor.  This is one of the easier components to check.

If this is your first time watching our channel, please click subscribe down here on the bottom right.  And if you click that little bell next to it, you’ll be notified of all our videos as they come out.

Thanks so much for reading and we’ll see you on the next blog.