Why Your Sacramento HVAC System May Be Having Airflow Problems

AC Repair

Have you noticed that some sections of a room in your home are cold while others are warm? Your HVAC system may be having airflow issues. Read on and learn some of the common reasons why such airflow problems develop. Use this information to adjust the factors which you can handle and call a Sacramento HVAC professional for help on those issues which are beyond your capacity to address.

Obstructed Outdoor Unit

Heating and air conditioning professionals usually select the most appropriate locations in which to install the indoor and outdoor units of air conditioners. However, some Sacramento homeowners may unknowingly impede the performance of the AC by placing obstructions close to the outdoor units.

For example, a homeowner may place a disused appliance close to the outdoor unit. This can prevent that unit from performing its role of cooling the air which is coming from inside the home. Airflow problems will then result.

This problem is easy to solve. Simply check the outdoor unit and remove anything which is within the recommended clearance in the vicinity of that unit.

Blocked Registers and Vents

Many airflow problems result from a blockage in a register or a vent. For example, you may place a piece of furniture in front of an AC register. That furniture will impede the flow of air within the air conditioner components in that room of your home.

Fix such problems by checking the rooms where airflow problems exist. Remove everything that may be in the way of a vent or a register.

Clogged Air Filters

Another common cause of airflow issues is a clogged filter. Air will be unable to flow freely through the filter and into the room if that filter is dirty. Regular replacement of filters (in accordance with the recommended change intervals provided by the manufacturer) can ensure that a clogged filter will not affect the flow of air within the HVAC system.

Leaky or Blocked Air Ducts

The ductwork may also have a defect which is compromising the airflow within your air conditioning system. For instance, dirt may have bypassed a clogged filter and accumulated within the ducts. Such dirt can constrict the ducts and affect the flow of air. Damaged ducts can also leak conditioned air and limit the flow of air to the places where it is needed.

It is advisable for you to ask an experienced Sacramento air conditioning technician to inspect the ductwork and conduct the necessary repairs or cleaning to fix the airflow problem.

Defective Fan Blower

Blower fans push air through the ducts and channel it to the different rooms in your home. Those fans can become sluggish once the motor powering them grows old or weakens. Such a defect can only be remedied by a technical person who will decide whether the fan simply needs to be cleaned or the motor needs to be changed.

Improperly Sized HVAC Units

Some airflow issues in homes can be traced to an improperly sized air conditioning unit. An oversized AC will cycle on and off too frequently. Those short run times deny the system an opportunity to extract all the moisture from the air circulating inside the home. Consequently, the air will feel clammy and you will no longer be comfortable in the home.

Contact an HVAC expert in Sacramento and let that person advise you on the appropriateness of the AC for the size of your home. This analysis is particularly important in case the system is older and may have been installed at a time when the preference for bigger units was prevalent.

Low Refrigerant Charge

A refrigerant leak can also cause airflow problems. The loss of refrigerant causes the HVAC system to be unable to work properly. Don’t try to fix refrigerant leaks on your own. Ask a professional to use the appropriate tools to identify the leaks and fix them before recharging the system with the right refrigerant.

Many of the airflow problems in the discussion above can be detected and corrected early before they cause bigger repair challenges if you have a habit of inviting a Sacramento heating and air conditioning professional to inspect and service your HVAC system. Address all issues quickly so that your comfort isn’t compromised.

Contact Fox Family Heating and Air if you feel like you are experiencing air flow issues in your home. If you HVAC system is showing signs that it is not performing properly, now is the best time to have it checked out to avoid an unnecessary breakdown as Sacramento summer heat approaches.

Compressor Start Kit

Compressor Start Kit

A component that will extend the life of your HVAC system

In the second part of the summer series of common parts of an air conditioning system, I bring up a part that may not already be installed in your unit or something that came with your outdoor unit when it was installed. A compressor start kit or hard start kit is a component that you can add on to your system that will help extend the life of your compressor, the heart of your air conditioner that pumps the refrigerant.

A compressor start kit significantly reduces the amount of time it takes to get your compressor up to full run speed. For about 7 or 8 seconds while the compressor starts up, the motor windings undergo a tremendous amount of damaging heat and energy, about 10 times more actually. The start assist can reduce the amount of time it takes to start up by nearly half.

Imagine your car broken down in the middle of the intersection. You could probably push that car out of the intersection by yourself, right? Well if I came up and helped you push that car out of the intersection, three things would be better for you. You’d be less tired once we got out of the intersection. You would get there faster, and you could probably actually do it again. Now, those of you who have ever pushed that kind of dead weight more than twenty feet know what I’m talking about.

This is how we know we can extend the life of your compressor. This is an add-on to the system. A lot of manufacturers don’t put one on your system because it is not in their best interest to do so. Why? Because they extend the life of your $2000 compressor! Once installed, a start kit is designed to last 5 to 10 years, but can last the lifetime of the system.

What’s the Required Service Area for HVAC Installations?

service-area-fox-family-hvac

Installing Equipment Safely and to Code for our Sacramento Customers

When we install HVAC equipment in people’s homes, there is a code that covers how much service area there needs to be in front of the equipment.  That’s what we are talking about today on Code Corner.  Let’s take a look at what the codes say and adhering to to the code when doing an HVAC change-out.

Introduction

I’m not here to pretend I know or could even interpret all the codes correctly.  I’m simply trying to open a conversation about codes we cite on the job every day out there without even knowing it.

But where is that code in the book?  That’s what this project is all about.  Ultimately, this project is good information for technicians but if they help you, then that’s great!  And good for you for even caring about the building codes enough to read this blog post.  It means you care about your work too!

Let’s take a look at what the codes say about Required Service Area in front of the HVAC equipment and adherence to the code when doing an HVAC change-out.

Making Space

Have you ever been in front of a furnace in the attic, and noticed you don’t have enough space to work?  Imagine you need to pull the heat exchanger from the furnace and change it with a new one.  If there’s not enough room in front of that furnace, the technician won’t be able to remove and replace parts as needed.   And trust me, this accessibility issue is a major problem because if we can’t get that blower motor out, a more invasive procedure needs to be carried out to extract the part which will cost the homeowner more money at that time in the future.

This has already happened to people a long, long time ago, and they learned from it; And they wrote it in a book so that future techs won’t make the same mistakes they did.

Now, imagine you’re trying to perform a regular maintenance, but can’t get the access panel off the AC because a giant lattice structure has been solidly built around it.  The homeowner doesn’t want to LOOK at this horrid AC in the back yard, so they cover it up.

Well, the builder of the lattice structure at the AC, and the installer of the platform or non-existent platform at the air handler in the attic didn’t install this system properly.

CMC 304.4.3 says a level working platform not less than 30 inches by 30 inches has to be provided in front of the service side of the appliance.

IMC 306.1 says the same thing

The exception to this rule is that a working platform doesn’t need to be provided when the furnace is capable of being serviced from the required access opening. In this case, that furnace can’t be over 12” from the attic access either because some techs might not be able to reach components inside the furnace casing.

Now, you know I like to encourage you to read the installation manual while you’re installing the equipment, right?  I personally like to look through it the night before my next install.  That way I know what I’m saying if something comes up during the install with my co-workers.  Usually, the manual has more restrictive guidelines when installing HVAC equipment.  The city and county code inspectors everywhere defer to the installation manual so many times because the manufacturer has stricter requirements for the installation.

Referring to the Mechanical Code

In the IMC, in 102.1 Conflicts in Code, it says if the codebook and the installation manual conflict with each other, to follow the more stringent requirement.

The installation manual for our equipment in the attic says the clearance in front of the furnace and coil in the attic is required to be at least 24 inches.  If the county inspector adheres to the IMC or CMC, and it says 30 inches in front of the appliance, but the installation manual says we can go 24 inches in front of the unit.  Which is the correct answer?

In this instance, the mechanical code is still more stringent on its requirements, so when I hear people say we only need 24” in front of the furnace, I know it will probably fly, but the inspector could call us on it and ask for a 30” service area in front of the unit.  And you need to know that.

The service platform is supposed to be constructed from “solid flooring.”  Many techs around here use 5/8” plywood. I wouldn’t use 3/8” or 1/2” plywood, because it’s pretty flimsy for bigger guys, and over time can splinter and break.  Nobody likes to sit on a flimsy service platform that was supposed to be built “solidly.”  Instead, get the 5/8” thick plywood.  Its only a few more dollars and will be secure for any technician who has to crawl across it.

Avoiding Obstructions and Providing Space

Is it okay if the service platform is uneven?  Like a step up or down?  I don’t think anybody will give you a hard time if the decking for the service area is 4 inches higher at one point than the other.  The point is to be able to pull parts from the unit without any obstructions, like a wall or truss, and have a spot to put your tools and anything else you might need for the job.  So if that step is going to interfere with the changing of any part of that system, it’s not built to code.

Outside at the AC, just make sure you have a 30 x 30-inch area in front of your access panel.  This ensures future techs can get in there and make the necessary repairs to get the customer up and going again.

Consider the Next Installer

If your homeowner is going to build that lattice structure around the AC, ask them to build it so it can be slid out and then back when the AC tech moves on.  Don’t let them pour concrete piles so it’s secure but never going to move again.  That inhibits technicians from doing their job safely.  There’s nothing more frustrating than having to take down the lattice panels around an AC one screw at a time, just so you can get in there and clean the AC so it will work properly again.

As installers, I believe we have a responsibility a to consider the next tech who comes to service this equipment.  He or she might not be 5 foot 8, and 165 lbs.  There are short techs and tall techs, narrow techs and wide techs.

Correct Equipment Installation

That’s what this series is about.  It’s not to say that I know all the codes, and can interpret them perfectly.  Code Corner is about Fox Family Heating and Air wanting to install equipment correctly, so we can pass the inspection that comes with pulling a permit for the job.  Read more about HVAC installations here.

Remember, any time we alter the electrical, mechanical, plumbing and gas lines, we need to pull a permit and follow the codes and the installation manual.  And then we need to have a third party, unattached inspector come by, and just make sure we installed it correctly.  It’s not a bad thing!  We just look at it as an extra set of eyes on our work to make sure the family who resides in that house, and uses that system we installed, is safe forevermore!

Looking Ahead

I have several other topics I want to open a conversation about when it comes to HVAC and the building codes.  I really hope nobody is taking offense on these topics.  My goal is to elevate the HVAC world and make us all better technicians so we can go out and take care of our customers safely.

Comment below if you’ve have had any weird platforms or service areas so tight you couldn’t service the AC!  I’m sure you all have some great stories.

Thanks so much for watching and we’ll see you at the next blog.

5 Factors Affecting the Cost of Buying and Installing a Sacramento HVAC Unit

professionalism in the workplace

Many people who face replacing an HVAC unit in Sacramento want to know just how much that project will cost them before they commit to that system’s replacement. Often times air conditioner replacement is not planned, it’s more of a sudden purchase in the heat of summer. So, even if you don’t plan on replacing anytime soon, this blog is still a great read. This article discusses some of the factors of the cost of buying and installing a Sacramento HVAC unit.

The Size of Your Home

An AC unit should be selected based on its suitability. Bigger homes will require bigger AC units because those bigger homes will have more air that needs to be conditioned. The bigger air conditioning units usually cost more to buy and install. You should, therefore, expect to spend more on purchasing an AC unit if you have moved to a bigger home. If your home’s Air conditioner is more than a decade old, the current AC may be undersized for your home. Often times with replacement you need to have your contractor look at the overall design of the ductwork (as detailed below) and the size and location of the unit for maximum efficiency.

The HVAC Equipment Brand Preferred

The purchase price of your new air conditioning unit will also be affected by the brand you opt for. Think about this price in relation to what would happen if you were to buy a car. A Porsche is likely to be more expensive than a Toyota even though they’re both cars.

Some brands of air conditioning units are reputed to be more reliable than others are. Such dependable brands may be more expensive than the little-known brands. It may be wiser for you to talk to a (Sacramento) heating and air technician for advice about the best brands to consider so that you widen your options and find something within your budget.

Your Home’s Complexity

The complexity of your home will also impact the cost of installing that new air conditioning system. For example, a home in which spray-on insulation was used makes it tougher on the installers since they will have to cut through the insulations. Similarly, historical homes take more time since the home is fragile.

The Sacramento HVAC installer will visit your home and survey it before estimating how much the installation project is likely to cost.

The Extra Features Selected

The specific features that you want your new HVAC system to have can affect the total cost of the system. For instance, individuals who wish to have multiple zones will have to pay for more hardware (zone dampers and thermostats, for example) than another homeowner who doesn’t want to have air conditioning zones in the home.

However, you should not shy away from getting some of the extra features. If those features will increase the comfort level and result in lower long-term maintenance costs it is worth it. The higher upfront cost will be justified by the lower ongoing costs that you incur if you have the latest additional features on the market.

The Condition of the Ductwork

It would be wasteful to acquire an efficient AC unit and then link it to defective ductwork. In fact, many jurisdictions have mandatory inspections in case a new AC unit is being installed.

Any leaks and worn ductwork components will increase the installation cost. Since those issues will have to be attended to before the new air conditioning unit is commissioned for use in your home.

An air conditioning unit should be selected based on the location and home where that unit will be installed. Never undertake such a task on your own. Hire an air conditioning replacement professional like Fox Family Heating and Air and let us recommend the best unit for your needs.

Can I Still Use My A/C With a Bad Capacitor?

Can I still use my AC with a broken capacitor?

A Common Air Conditioner Problem in the Sacramento Valley

Every spring and summer, we get a lot of phone calls from customers saying their AC isn’t working.  A good portion of those calls is for a common repair.  Their capacitor has failed.  If your technician has told you that your AC capacitor is bad, it’s definitely one of those items you’re going to want to replace. And I’m going to tell you why in this post.

Fair Warning

I want to give a fair warning to everyone reading this.  If you’re reading this with the intention of changing your own capacitor, they carry a lot more voltage than the typical 240 volts that runs the air conditioner.  Capacitors can and will shock you even when the power is turned off.

Serious injury and death can occur, as high voltage doesn’t mix well with the human body.  So this blog post is not meant to teach anyone how to install or replace a capacitor.  There are other YouTube creators that will explain it to you.  I recommend having a real HVAC technician handle this repair as that person will know how to discharge the capacitor properly so no one gets injured.

What is a Capacitor?

A capacitor is a storage bucket of electrons that is constantly giving itself up for the motor it supports.  And, they don’t make them like they used to!  Capacitors made in the 60’s 70’s and 80’s were designed to last a long time.  As a technician, I still come across these late model air conditioners and I’m amazed their capacitors are still running just fine.

That’s unheard of these days.  Capacitors made today are typically designed to last five to ten years.  There are definitely some brands of capacitors that are made better than others, and it’s up to your HVAC technician to find those good brands and use them in the best interest of you, the customer.

Frustrations

I’ve seen caps that only lasted two years!  I know of certain brands of air conditioners that are installed brand new, and two or three years later, we are replacing the capacitor.  Then an HVAC company comes out and replaces theirs with a cheap or less proven brand, and it gives out in a short amount of time, with no warranty on the item.  So the customer has to buy another one.  That’s frustrating for the customer, but not for the HVAC company. They get to keep charging $200+ to keep your AC running every other year.

We use MARS brand capacitors because they are made in America and I personally believe they last longer than the others.  There are several other brands to use out there, but we don’t switch it up and use those other brands just because we happen to be near an HVAC supply store that sells cheaper capacitors.

A Dead Giveaway

Most of the motors in your air conditioner can’t run without a good capacitor.  Like I said, they support these motors.  They help the motor start and run efficiently.  Some people have gone out to their air conditioner and noticed the fan wasn’t spinning on their AC as it should be.  So they get a stick or something to reach into the fan shroud and try to manually get the fan blade to start spinning.  And it works now!  This is a classic sign that the capacitor for that fan motor is bad, and a good example for you that demonstrates why these motors can’t start and run efficiently without a good capacitor.

And we can’t just put any old capacitor in there, because it needs to be the exact size recommended by the manufacturer.  If it isn’t, the motor might start but will operate out of balance. It causes an uneven magnetic field around the motor, which can make the motor noisy, make it work harder (raising the cost to run it,) or just cause the motor to burn out altogether.

Other Complicating  Factors

There are differences in a typical dual run capacitor that normally comes in your AC and a start capacitor that can be added onto your system either by the manufacturer or at your house by a technician.  I’ll explain those in a different blog post and video when I make them at a later date.

But for the purposes of this blog, I wanted to answer a question recently posed by my best friend Matt.  It’s actually an excellent question to answer for other people out there.

If your capacitor has failed, please don’t try to run that part of the system.  It’ll only cause more damage to the system, which might force you to replace a bigger, pricier part, or your entire system.  So just be patient.  Hopefully, your technician has one on their truck already.  They usually will.

Use Caution

Some of you folks out there changing these out on your own better be careful.  Capacitors carry a lot of power and will strike before you know it.  So, that’s just my last bit of warning for you DIY’ers if you try to navigate this repair on your own.

If you are buying these parts online because of price, they might be cheaper, but that’s nothing compared to getting injured or possibly ruining a more expensive part because you didn’t hook it up correctly.  If you’re paying the average price of $100 to $300 dollars for a capacitor from your technician, (depending on which part of the country you’re in,) it’s because you’re paying for that company to have the right one on their truck and install it right now for you.

Thanks for coming by and we’ll see you on the next post.

Four Reasons Why Your AC Circuit Breaker Keeps Tripping

circuit breaker tripping

Why Does My Air Conditioner’s Circuit Breaker Keep Tripping?

Have you had an issue with your air conditioner lately where the circuit breaker at the main panel keeps tripping?  Have you gone over to the side of the house and tried to flip that breaker back on only to have it flip right back off?  In this blog, I’ll go over what could be going wrong with your AC system when this happens.

It’s not fun to come home and realize that your house, which should be a cool 75 degrees right now, is sitting at a balmy 85 degrees.  So, you go over to the side of your house and open the main electrical panel.  There you find the air conditioner circuit breaker tripped.  This means no high voltage power is getting to your AC to let it run.  Not cool.

You flip the breaker back to the on position only to have it trip again either immediately or after a few minutes or even seconds.  Now what?  So you call your local AC guy.  He comes out the next day.  Now that the system has been sitting idle for several hours, it doesn’t surprise me when the technician who comes over for a $ 100-weekend service call flips the switch on the breaker, and the system starts working again.  Hey! Someone’s got the magic touch!

You pay the smart technician the diagnostic fee, and they head out to their next call.  Meanwhile, after 30 minutes of the system running fine, the breaker trips again.  The technician is long gone, and likely can’t be back to fix it until Monday when they re-open.

How Do You Know What’s Going on with the Circuit Breaker?

If the breaker repeatedly trips after a while, there’s a problem with one of the parts inside the AC.  If the breaker trips immediately after turning it back on, there something going in the wiring.

You can’t just flip the breaker back on and hope it stays that way.  It might! But most likely, there is a reason it tripped, and that problem will come back around.  When this comes up with my technicians at Fox Family, I tell them to slow down and ask themselves, WHY did the breaker trip?  Sure, the breaker reset when you flipped it back on, but a technician finds out why it tripped.

Danger!

I want to reiterate that I’m only giving homeowners and technicians some reasons why the breaker may be tripping.  Working with high voltage can cause severe injury and even death to even the most experienced technicians.  I read about it all the time in the mechanical chat groups I’m in.

Why Do Breakers Trip?

A breaker trips when there is too much power consumption or current at any given time.  The wire from the AC to the panel heats up enough that it trips.  This stops a potentially hazardous situation from happening.  Here are some reasons your AC will cause circuit breaker tripping:

  1. The breaker could be bad
  2. The compressor or fan is drawing too many amps
  3. A short circuit
  4. Refrigerant pressure issues

The Breaker Could Be Bad

This doesn’t happen a lot.  Breakers are sturdy switches that, when heated up enough that they’re repeatedly tripping, can become weaker and trip more easily.  A new breaker can fix this problem.

The Compressor or Fan is Tripping the Circuit Breaker By Drawing Too Many Amps

Although I can’t cover every situation that might happen, I can give you a couple of common scenarios.  If a motor gets stuck and can’t turn over when the proper voltage is applied, the motor will pull a higher number of amps.  So much so that the heat builds up in the wiring and trips the breaker.  This won’t trip the breaker immediately.  But after a while (and there is no specified amount of time), the breaker can trip whenever the thermostat is calling for the AC to be on.

At the start of the cooling season, this pattern often happens with the compressor, that black cylinder at the bottom of your outdoor unit.  It pumps the refrigerant back and forth through the copper lines, much like the heart does in the body.

Assuming the capacitor is good, sometimes adding a hard-start capacitor to the circuit will help give it that boost needed to turn the motor over.  If it does, count your blessings and start saving up for a new compressor or AC unit altogether.  It’s running on borrowed time. It’s just a matter of time before your AC gives out.

A Short Circuit

Another reason for a circuit breaker to trip is because of an electrical short.  When two normally sheathed wires like a hot wire and a neutral wire touch each other when voltage is applied, it causes a major event.

The AC uses 240 volts.  This means the two or three wires leading to your motor carry at least 120 volts.  A third one can carry even more.  If two bare wires touch each other when the system is supposed to be on, a high current situation can occur, causing the breaker to trip.  As soon as the voltage is applied, the breaker will trip immediately.

Touching Wires

Another way the breaker will trip immediately is if one of the motor’s wires touch the inside wall of the compressor.  Remember, these motors have windings inside of them that help spin the motor shaft.  The windings are covered with sheathing to protect the wiring.  But it still happens, especially on older systems that have been running for ten to 20 years or longer.

Check below for a link to my video that talks about how to diagnose a bad compressor.

Refrigerant Pressure Issues

One last reason a compressor could trip the AC breaker is refrigerant pressure.  If the pressure is too high in the system, meaning there is too much refrigerant, the compressor is once again having to strain too hard to do its work.  The breaker won’t trip immediately, but over time.

This scenario doesn’t happen as often as the other events above but can look like a bad compressor. Removing a pound of refrigerant will tell you if it’s a pressure issue because you’ll see both sides of your gauges go down a little.  If this happens and the temperature split stays between 18 and 22 degrees, I would try removing refrigerant until you get the compressor amps to get back down to below the RLA, and the temp split stays within range.

Starting Over

If removing the refrigerant isn’t working as well as you’d like, it might be smart to tell the customer you’d like to remove all the refrigerant and start over with virgin refrigerant and a factory charge.  You don’t know this system’s history, and you’re not expected to, especially if the homeowner doesn’t know it or have invoices showing what previous techs have done to repair the AC in the past. It’s a fair solution for both of you.  If you do this and the compressor is still pulling high amps, and you’ve checked everything else on the system, you have a bad compressor.

Summary

These are just a few reasons why the circuit breaker in your home could trip the breaker in the main electrical panel.  If it trips immediately after turning it back on, you likely have a problem in the wiring.  If your breaker trips after a certain amount of time, something is going on with a part in the AC system.

Let a Professional Do the Fixing

I can’t tell you anybody can fix these problems by themselves.  In fact, you might not even be able to order the parts you need as it takes a licensed contractor to purchase them from a local distributor.  Let a professional come out and diagnose the exact problem and then fix the system so you can have peace of mind.

Thanks so much for stopping by and we’ll see you next time.

Don’t miss my videos about or related to this topic:

The Unrivaled Power of YouTube

Power of YouTube

I remember the first video I ever made for my YouTube channel. It was a complete disaster. The audio was terrible, the video was a grainy desktop computer camera, and I had only the slightest bit of knowledge of what I was doing. But I posted it anyway, and to my surprise, a few people actually watched it! Encouraged by this, I kept making videos and got a little better with each one. I learned how to use editing software to improve the quality of my videos, and I became more comfortable in front of the camera. As my skills improved, so did my popularity; today, my channel has thousands of subscribers and I have learned the power of YouTube.

With the Power of YouTube, I have:

  • Tapped into the billions of people watching monthly.
  • Gotten found on Google more organically.
  • Created content that will never disappear from the internet.
  • Earned trust from people without having gone into their homes yet.
  • BONUS: Make monthly pocket change from Google.

I can honestly say that making these videos has been the single most cost-effective thing I have done for our marketing and branding presence. Not only are a ton of people in our immediate service area watching and learning from our videos, but they are also learning who we are and our business ethics. We have developed a lot of trust from people all over the country too. Ask my admin team, and they’ll tell you the funniest part of their day is when people call from the other side of the country, and even Canada, asking if we service their area. People are watching overseas too. It’s amazing. Just 6 to 8 hours per video has made us an industry name. In my service area, I have optimized them to stand out when people search for what may seem like mundane things like, Why is my air conditioner so loud?” I am also creating a buzz amongst technicians in my area looking for a better workplace. I can stand at the food truck at Home Depot in the mornings, and a tech will come up to me and express how much our videos have helped him in the field. That’s powerful!

I have found that the more transparent we are while making my videos, the better response we get from them. Showing someone how to replace a compressor isn’t going to lose you business. It is actually going to demonstrate your expertise and what is involved in the process. I remember one comment from that compressor video: “Nope! When I saw the torches come out, I knew I was in over my head.”

I just continued making a video once a week or two and uploaded them to the second most popular search in the world, YouTube. I have oodles of topics to talk about. Every little facet of the HVAC world, from how a pressure switch works to starting a business from the ground up, may seem trivial to you, but to others trying to learn something, it isn’t.

Early adopters of content creation on the niche of HVAC were “grayfurnaceman,” “Dr. Zarklov,” “Zack Psioda,” “Lex Vance,” and “NorCal Refrigeration & H.V.A.C..” These guys were simply sticking a camera in front of their faces and chatting about what they were doing that day. Guys would hit the record button and say, “Hey guys, how are you doing? Today I wanted to bring you along as I troubleshoot a gas furnace.” And then, they would take their camera along, sit it down, and point it at the furnace with them in front of it. Now, these types of videos are still being produced by HVAC business owners and service techs all over the country.

What started out as a few guys putzing around making videos showcasing their personal lives and the life of an HVAC technician out in the field ended up being thousands upon thousands of views a month. Content creation is about repetition. Even if one video flops and you realize no one cares about that topic, you keep pressing on. More videos mean more views. I found myself making a video about something I thought was vague, The Facts About Condensate Drain Lines.” Three years later, that video has over 72 thousand views! Are they all from my service area? Not likely. In fact, I can see from my YouTube analytics that not only people from Sacramento have watched it, but Houston, Los Angeles, Dallas, Melbourne, Australia, and Long Beach are the most popular cities the video has been watched in.

I had one lady from Phoenix, Arizona, call us in Sacramento and ask if she could fly me down there and put me in a hotel for the night, would I fix her system? In her search for a good company, she only trusted Fox Family from watching our videos. That was surprising, but I knew a company in her area and referred her to them. The problem got fixed, and at the same time, I bolstered my HVAC network by referring that company, which I know now, will refer me likewise.

HVAC is a niche that we are already passionate about. Why not demonstrate that passion and start building trust and familiarity for your company too? YouTube is the second largest search engine in the world, and it is easy to see why. YouTube’s search algorithm is very effective, allowing users to find the exact content they are looking for. It’s also a great platform for businesses and creators. By uploading engaging content, businesses can reach a large audience of potential customers. There is no doubt that the unrivaled power of YouTube has helped grow my business.

11 Ways to Avoid Hot and Cold Spots in Your Home

Avoid Hot & Cold Spots

Delivering the right amount of air to each room at the same time is key to being comfortable.  And not just in one or two rooms.  A properly set up HVAC system will comfort your whole home or business simultaneously.

Of course, the goal is to have the same even temperatures throughout each room so when you walk through your house, you don’t feel warmer in one room than another.  Today at Fox Family Heating and Air, we’re taking a look at 11 ways to avoid hot and cold spots in your Sacramento Valley home or business.

1. Is your system sized correctly?

First and foremost, is your system sized correctly?  This means the original installer of the system did a proper load calculation of your home.  If they didn’t, then it’s not pushing enough air to your rooms regardless of whether the rest of our checklist is perfect.

2. Return air and supply air unity

Having the right amount of return air to supply air unity means you’ll be delivering the same amount of air out of your system as you are bringing to the system.  You have a return air grille or stand where your filter goes.  That’s where the system draws its air in.  On the other side of that air handler, the system supplies your conditioned air.  Systems are designed to supply about 400 to 500 cfms of air per ton.  But if your system is breathing in enough air from the return, how is it going to supply enough air to keep your home evenly comforted?

3. Adding returns will mix hot and cold air

This brings me to the option of adding more returns to strategic rooms around your house.  That return air grille in the main hallway doesn’t have to be the only return in the home or office.  For example, master bedrooms in newer homes have a return air grille installed in them.  This mixes the air in the room so warm air in the summer gets removed from the room, while colder supply air is being delivered into the room.  You’ll really notice a difference by adding a return to these pesky rooms that are warmer or cooler than others, depending on the season.

4. Closing air registers will force hot and cold air elsewhere

Not one of my favorites, but some folks will start closing down their adjustable supply registers in various room that get too much air.  They’re hoping to force the air somewhere else in the house that isn’t getting enough air.  The only thing I don’t like about this is that those registers that you start shutting down can do a couple things.  One is really annoying and the other can actually shorten the lifespan of the system.  Closing down “strategic” registers in the home or office can make those registers start whizzing.  This makes it louder in that room because we are creating a restriction that speeds up the airflow as it leaves the supply register.

The other reason has to do with the static pressure of the system.  Much like blood flow in the body, we wouldn’t want to pinch a blood vessel in hopes to deliver more blood elsewhere right, this could cause big problems with the body.  The same goes for aerodynamics in your ductwork.

5. Change those filters to eliminate hot and cold spots

Changing your filters quarterly will not only help keep your system clean, but it will allow airflow into the system.  If the filter gets too dirty, you’re creating a restriction if the system can’t breathe in properly, it won’t be able to breathe out the appropriate amount of air.  It’s like breathing in through a straw and exhaling out of your open mouth.  Eventually you’re going to hyperventilate.  So, let’s keep those passages open so the HVAC system can eliminate hot and cold spots in your home or office.

6. Keep Heat at Bay with Window Coverings

The sun’s radiant energy can warm up a room quickly.  A room with sun-drenched walls or windows allow this heat into those rooms and will warm up more quickly.  Installing window coverings will keep this radiant heat at bay.  These come in the form of screens or tinting that can be attached to the outside of windows, or curtains and blinds affixed to the inside of the windows.  Either way you choose, you’re going to enjoy having a more comfortable room if you can reduce the chance of that heat coming in this way.

7. Electronics in Rooms will Increase Warmth

It’s so popular now to have gaming systems or high-tech computer systems in a room or office.  The heat these devices put out is enough to warm up a room, making it less comfortable than other rooms in your house.  Adding more supply air by using a larger duct will help to deliver more air to that room.  Just like I mentioned above, a better solution may be adding a return to this room as it will remove the warm air while cold air is being supplied to the room.  This will make your room more comfortable, faster.

8. Ceiling Fans will Mix Hot and Cold Air

Another way to mix the air in your room is to turn on that ceiling fan.  When it’s hot outside, have the fan blowing straight down towards the floor.  The warmer it is, the higher the fan speed should be.  Conversely, in the wintertime, turn the fan so it blows upwards.  Both ways will mix the air more effectively and make those rooms more evenly comforted.

9. Keep Hot and Cold Air Moving by Preventing Airflow Restrictions

Remove hot and cold air spots by taking a look at your ductwork.  It might be under the house or in the attic.  If you can see your ductwork, you will be able to determine if it’s delivering the air efficiently.  If the ductwork is sagging or kinked, it won’t deliver the air properly.  Each duct has a finite amount of air it can deliver appropriately.  Making sure it is installed correctly is a great way to keep your house evenly conditioned.

10. Prevent Hot and Cold Spots by Checking Insulation Levels

You can also control hot and cold spots by paying attention to insulation.  Attic insulations levels can greatly impact how quickly that hot or cold air infiltrates through the ceiling into your room.  Sometimes various service professionals will need to work up there.  In the process, they may matte down some of your insulation, making it less effective.  If there is not enough insulation over one room or the other, this will create hot or cold spots.  These reduce your comfort level in those rooms.  By blowing in some more insulation, you can make your whole house more comfortable to be in.

11. Properly Sized Ductwork Improves HVAC Efficiency

The size of your HVAC system as well as the right size duct system to deliver that air evenly are both crucial to your comfort.  This isn’t the easiest thing to figure for most DIY’ers.  An hvac professional can help you determine what size duct is needed for each room.  A system of supply and return ducts running every which way can be confusing.  Making the right decisions with your ductwork will make your HVAC system more efficient and comfortable for your home.  This will eliminate hot and cold spots in your home

Summary

Let Fox Family come out and take a look at what can be done to make your home more comfortable if you’re experiencing hot or cold spots.  Making your system as efficient and effective as possible will certainly add to your quality of life.

Thanks so much for stopping by, and we’ll see you on the next blog post!

Don’t miss our videos on related topics:

4 Components That Make Up The SEER Rating

4 Components That Make Up The SEER Rating

If you have been in the market for a new central air conditioning system, you have been doing research online or getting quotes from a few HVAC companies installing new systems.  Undoubtedly, you have been hearing terms like SEER and EER ratings.  What is the SEER rating (pronounced like a steak you’d “sear” to perfection), and what influences the actual rating of the system you will buy?

Using a quote from Trane.com, “The SEER measures air conditioning cooling efficiency, which is calculated by the cooling output for a typical cooling season divided by the total electric energy input during the same time frame.  A SEER rating is a maximum efficiency rating, like the miles per gallon for your car.”

If you go on to AHRI Directory to find out what is involved in measuring these SEER ratings, you’ll find terms like Wet-Bulb, Dry-Bulb, Static Pressure, Enthalpy, Steady-State Tests, and Cyclic Tests.  But it really comes down to a few things.

  1. The outdoor condenser coil.
  2. The indoor evaporator coil.
  3. The compressor.
  4. The blower motor in the furnace pushing the air across the coil.

The condenser coil – Ever wonder why the outdoor air condensers we are installing today are larger than the ones 20 years ago?  Heat transfer and surface area.  The outdoor condenser coil can take the heat absorbed inside and get rid of it easier when the unit’s surface area is larger.

The evaporator coil – Jeez!  Talk about getting larger.  The evaporators are almost as big as the furnaces we are installing today.  Some of the larger evaporator coils are 30 inches tall or more.  Again, it’s all about efficiently absorbing heat and humidity from the house and sending it outside.

The compressor – Today’s modern scroll compressors have minimal moving parts.  There are single-speed compressors, two-speed, all the way up to fully modulating.  The scroll compressor can move more refrigerant in a single cycle than previous versions, like the rotary and piston compressors.

The blower motor in the furnace – Motors are more efficient when they run at lower speeds.  A 3-ton air conditioner blower motor will run at one amperage, while a 5-ton blower motor, with its speed taps adjusted down to a 3-ton capacity, will run at less amperage than the 3-ton motor.  That lowers the amount of energy used by the system, increasing its SEER rating.

SEER ratings on AHRIdirectory

SEER ratings on AHRIdirectory.org

Let’s look at the SEER ratings on AHRIdirectory.org for a Trane split system where the AC/condenser is located on the side of the house, and the furnace is located in the garage, closet, or attic.

In the example, we have the same 4TTL6036A1 condenser.  In model number nomenclature, the first “6” in “6036” means 16 SEER.  The “36” stands for 36,000 btu capacity – a 3-ton system.  We can adjust the actual SEER rating of this “16 SEER” condenser by changing the evaporator coil and furnace matched up with it.

4 Components That Make Up The SEER Rating

So, unless you see the actual copy of the AHRI certificate listing the model numbers of the furnace, condenser, and evaporator coil, you might think you are buying a 16 SEER 3-ton split system but only be getting a 15.50 SEER system. Then again, if your contractor matches that outdoor unit up with a larger furnace and coil, you could be getting an even more efficient system than 16 SEER.

Let’s get into how higher SEER systems save you money in the long run in another blog, but for now, I wanted to share this particular information.

How I Add Refrigerant to a Central Air Conditioner

How I add refrigerant

Hey HVAC techs! I’m Greg Fox, and today we’re going to talk about adding more refrigerant to an air conditioner.  I wanted to expand on our recent AC troubleshooting series by going into each part of its sequence of operations.  This week, it’s the refrigerant.

Now, I’m not going to get into the legalities and moral issues here of refilling refrigerant on a system that is leaking, but you should know a few things:

  • Refrigerant is expensive for the customer – If you have to keep refilling their refrigerant, which we do not know how often that will be, it can add up quickly.
  • They know their air conditioner better than us.  If we’ve never been to their home to refill their refrigerant before, there’s no reference for knowing how BIG their refrigerant leak is or WHERE the leak is.
  • The customer could lose all of their refrigerant tomorrow if they have a significant leak… or if it is a small leak, the refrigerant could last them all year or longer.   

Let’s go over some basics to charging an air conditioner on your average 90-degree day in the middle of summer.  Upon arrival at the house, your customer tells you the air conditioner worked just fine last year, but this year the system seems to run non-stop, especially as the summer days get hotter and hotter.  You ask the customer, “Have any other technicians been out to make repairs on your system since last year?” It’s very likely the customer will say no.  

There’s a lot of things that can affect the refrigerant charge.  Just remember, for the sake of time, we’re keeping this dialogue short, so we can get to the point of charging the system up.  

I like what Bryan Orr mentioned in an article I read.  He said,

“We need to set up equipment so that it won’t freeze during normal operating conditions.   At the very least, the typical residential A/C system should be set up so that the return air temp can get all the way down to 68° and still be just above freezing at the evaporator coil.

Let’s say it’s 78° in a house on an R410a system, and your suction pressure is 108 PSI.  That means your suction saturation (coil temperature) is 35°… so the coil won’t freeze.

However, the coil temperature will drop approximately 1° for every degree the return temperature drops. 

Remember, at 78° inside, the evap coil was at 35°, So if the customer sets it down to 74°, the saturation would get down to 31°, and the will start to freeze.

Knowing this, let’s grab your temperature probe and check the return air and the supply air.  Here you notice the difference between the two is about 8 degrees.  As a tech, you know the split should be around 18 to 22 degrees.  

Next, you head outside and feel the suction line to see if it’s cold. Now, there is some validity to the old term, “beer can cold” but it should not be the measure you go by to check the refrigerant charge. It can, however, give you a clue as to the condition of the system.  In this case, the suction line at the AC is barely cold.  Now, I’m not always a huge proponent of hooking my gauges up to a system every time I go out to diagnose a system, but in this case, we can tell something’s not right with the cooling system, so in this case, I want to see what is going on inside of it.

Hook your hoses up to the liquid and suction lines.  Be careful of blowback so you don’t freeze your hands.  Follow all safety precautions. 

Now, what do you see on your suction side?  I like my techs to talk to me about the evaporator coil’s TEMPERATURE and the TEMPERATURE of the condenser coil.  When I’m on the phone trying to help a tech out in the field, it’s hard for me to remember all the pressure-temperature ratios between the different refrigerants we use. 

So if someone tells me the evaporator coil is 40 degrees, I can immediately tell the coil is not freezing.  If someone tells me the temperature of the condenser coil is 140 degrees, I can immediately translate that to an outdoor coil that is under some seriously high pressure.

On the refrigerant gauge, the outer circle and those numbers are the pressures.  The inner rings of numbers reflect the temperature.  This is how I want my techs to communicate pressures to each other. It’s more efficient this way.  Most gauges these days have a green ring for R22 and a pink ring for R410.  The pink ring’s numbers are what we are using for evap and condenser coil temperatures on a 410 system.

Here we see that the evaporator coil is at about 20° F.  For proper refrigerant levels, the image I want you to project in your mind is this.  Our end-goal here is to have liquid refrigerant reach all the way to the TXV at the evaporator coil to meter the refrigerant appropriately.  Right now, there’s not enough liquid in the system to do that.  This means vapor is making its way to the metering device, and we’re not giving the coil enough refrigerant to interact with the speed of the blower air moving across it.

We need the perfect balance of airflow and refrigerant pressures to create that 18 to 22-degree temperature split we are looking for.

Let’s suppose this system holds 10lbs or R-410a.  In my mind, I’m thinking the system is about halfway charged. It’s an approximation, but we have to let the customer know about how many pounds we want to add, so they give you the okay to move forward.  Of course, you don’t know for sure, but they should be aware it could be around 5 lbs, and that will cost (whatever, $100 a pound). We need to let them know it could be a couple of pounds more or a couple of pounds less, but either way, we need permission to move forward.

Using a scale is the only way we can know for sure how many pounds of refrigerant we are adding. And it’s cool to let the customer know you’ll be using this too. It’s reassuring to them. This is great for preventing you from overcharging the system too.

My service hoses are already hooked up.  I’m going to start by putting my charging hose on the tank of refrigerant.  Next, I open the refrigerant tank valve and place it upside down on the scale. With the gauges closed on the manifold, I crack open the connection where the charging hose meets the manifold.  Not too much, though.  We just want the refrigerant to prime itself up to that point so we get rid of excess moisture and air in the hoses.

Reset the scale back to zero, so we know how much we are adding as the refrigerant enters the system.

I recommend you put an amp clamp on one of the wires leading to the compressor.  If you’ve seen my video on diagnosing a bad compressor, you know that the compressor’s amp draw correlates with the refrigerant pressures inside the system.  The healthiest compressors will run at around 60 percent of their RLA.  When you’re charging up the system, you’ll see the amp draws fluctuate as the refrigerant goes in and settles down.  Use your knowledge about the compressor amp draws to monitor your charging process.

Okay! We’re ready to charge!  With the charging hose valve open, we’ll start opening the suction side valve.  A quarter to half of a turn is enough.  There is no approximate amount of time it’ll take to insert 1 lb. of refrigerant.  Each situation is different.  To know for sure, use your scale.  

In this situation where we think the system is about 4 or 5 lbs low, let about 2 lbs flow into the system and wait for 5 to 10 minutes for the system to equalize.  Question.  How long does it take for the refrigerant to cycle through a typical residential split system? I’d say about 3 or 4 minutes.  If you have a different answer, let me know in the comments.

So we see now the low side has come up to about 27 degrees or 92 psi.  Our evaporator coil is still freezing.  Let’s add two more pounds and wait.  I know there’s a lot of pressure on techs to get their calls done quickly so they can get to the next one, but it’s essential to let the system stabilize before adding more refrigerant.  If you add too much, too soon, you could see the pressures skyrocket insanely fast.  And now you have to recover some refrigerant into a separate tank which takes even more time!

Now we are getting close to 32 degrees or about 100 psi on the suction side.  From here, we want to start dialing our subcool to whatever it is the manufacturer recommends.  This system says 10 degrees subcooling on a 95-degree day.  Let’s get a temperature probe on the liquid line and start getting our reading from it. We’re going to be subtracting the high side’s temperature and the liquid line’s temperature to come up with our subcooling.  

Add refrigerant a little at a time until the difference between those two numbers is 10 degrees. There’s nothing tricky about this.  Just don’t add too much too fast.  Add refrigerant and wait for the numbers to stabilize. 

You’re going to be looking for the low side pressure to be around 40 to 42 degrees or 125 psi.  The high side pressure/temperature will likely settle around 15 degrees above the outdoor temperature.  So on a 90-degree day, you may end up with a high side temperature around 105 degrees.  If you can get your numbers around this area, you’re close!  But let’s really get it dialed in.  Get that subcool to 10, plus or minus 2 degrees.

I will tell you; it takes longer to move the needle on your gauges when there’s less refrigerant in the system.  As the system starts getting close to the proper subcool, you’ll want to finesse the time you keep the manifold open, allowing refrigerant into the system.  Overcharging can happen quickly, especially on a hot day.  

Getting close to your 10 degrees subcool?  Cool!

Once you get it to this point, check your temperature split inside.  Is it around 18 to 22 degrees?  Great! You’ll notice the liquid line is a little bit warmer than the outdoor temperature.  Also, the suction line will be damn near “beer can cold!”

Test the system while it’s running.  Get your amp draws on the condenser fan motor and compressor.  Cycle the system on and off at the thermostat to make sure the system is operating correctly.  If it is, you’re good to go.

Well, I hope this has helped you when it comes to the charging process.  I make my videos for my technicians to reference when they are in a bind out in the field.  But if this can help anyone else, that’s great.

Thanks so much for reading, and we’ll see you on the next blog.

https://youtu.be/plTCLJF_zQk